Supplementary Material: Bayesian inference on random simple graphs with power law degree distributions

نویسندگان

  • Juho Lee
  • Creighton Heaukulani
  • Zoubin Ghahramani
  • Seungjin Choi
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian inference on random simple graphs with power law degree distributions

We present a model for random simple graphs with power law (i.e., heavy-tailed) degree distributions. To attain this behavior, the edge probabilities in the graph are constructed from Bertoin–Fujita–Roynette–Yor (BFRY) random variables, which have been recently utilized in Bayesian statistics for the construction of power law models in several applications. Our construction readily extends to c...

متن کامل

An L Theory of Sparse Graph Convergence I: Limits, Sparse Random Graph Models, and Power Law Distributions

We introduce and develop a theory of limits for sequences of sparse graphs based on Lp graphons, which generalizes both the existing L∞ theory of dense graph limits and its extension by Bollobás and Riordan to sparse graphs without dense spots. In doing so, we replace the no dense spots hypothesis with weaker assumptions, which allow us to analyze graphs with power law degree distributions. Thi...

متن کامل

Sparse Maximum-Entropy Random Graphs with a Given Power-Law Degree Distribution

Even though power-law or close-to-power-law degree distributions are ubiquitously observed in a great variety of large real networks, the mathematically satisfactory treatment of random power-law graphs satisfying basic statistical requirements of realism is still lacking. These requirements are: sparsity, exchangeability, projectivity, and unbiasedness. The last requirement states that entropy...

متن کامل

An Algorithm Generating Scale Free Graphs

We propose a simple random process inducing various types of random graphs and the scale free random graphs among others. The model is of a threshold nature and differs from the preferential attachment approach discussed in the literature before. The degree statistics of a random graph in our model is governed by the control parameter η stirring the pure exponential statistics for the degree di...

متن کامل

Reliable and Efficient Inference of Bayesian Networks from Sparse Data by Statistical Learning Theory

To learn (statistical) dependencies among random variables requires exponentially large sample size in the number of observed random variables if any arbitrary joint probability distribution can occur. We consider the case that sparse data strongly suggest that the probabilities can be described by a simple Bayesian network, i.e., by a graph with small in-degree ∆. Then this simple law will als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017